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Abstract 

The main assumption of Varadarajan's version of Piron's representation theorem for 
quantum logic, stating that the lattice under any finite element of the logic is a geometry 
of finite rank, is eliminated by means of more plausible assumptions, concerning the 
property of symmetry of the transition probability between pure states. It is also proved, 
that the quantum logic with symmetric transition probability is irreducible iff it is 
completely irreducible. 

1. Introduction 

The logical approach was created to solve the basic problem of quantum 
theories: are Hilbert spaces an appropriate tool for the description of 
quantum phenomena ? This question is currently the main point of investi- 
gations in the quantum logic area. The positive solution of this problem is 
given by formulation of a list of plausible physical assumptions, which 
result in the isomorphism of quantum logic and the logic associated to 
either a real, complex or quaternionic Hilbert space. All proposed sets of 
axioms of this type may be criticised because of the subjective meaning of 
the 'physical plausibility'. In the authoress's opinion, the most satisfactory 
result is Varadarajan's version of Piron's representation theorem 
(Varadarajan, 1968; pp. 176-184; Piron, 1964). However, Varadarajan's 
assumption that the lattice of all elements contained in a finite element of 
the logic is a geometry of finite rank, is particularly unfortunate, as Gudder 
(1970) also has noticed. The axioms, proposed by Gudder in place of that, 
seem to be also not entirely plausible, though formulated in intuitively 
clearer terms. 

In this paper, the assumption of Varadarajan already mentioned is shown 
to be a consequence of the more physical postulate, requiring that the 
transition probability P(~,fl) between pure states ~,fl is symmetric: 
p(~,fl)--p(fl,~). This property of transition probability is commonly 
accepted and considered as unquestionable. 
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2. Postulates 

The set ~ of all elementary (yes-no) measurements, called the logic, and 
the set 5 ° , called the set of states, are the main objects of studies in the 
quantum logic approach. The following postulates express the features of  

and 50 usually assumed. 

Postulate 1. Logic 5e is an orthomodular, complete, atomic ortho-lattice. 

Postulate 2. Set of states 50 is a o'-convex subset of the set of all probability 
measures on ~ ,  such that a ~< b, a, b ~ 5¢ iff a(a) ~< a(b) for all a ~ 50. 

These standard and often-discussed assumptions of the quantum logic 
approach are in agreement with physical intuition. The set of states, as well 
as Postulate 2, is omitted in the afore-mentioned considerations of Piron 
and Varadarajan. This restriction seems to be superflous because the notion 
of state has a good experimental meaning in quantum physics. 

The next postulate concerns a relation between set d of all atoms of L~ ° 
and set ~ of  all pure states. 

Postulate 3. (i) Set N is non-empty. 
(ii) If  e e N, then there exists an atom a such that a(b) = 1 ~ a ~< b for 

all b ~ L& 
(iii) I f  a ~ d ,  then there exists one and only one pure state a such that 

a(b) = 1 =~ a ~< b for al lb ~.LP. 

I f  e is a pure state, then the atom a such that a(b) = 1 implies a ~< b for 
all b e ~ ,  is called the carrier of c~ and denoted car (c0. The phenomeno- 
logical meaning of  Postulate 3 is evident. The carrier of pure state c~ 
represents a laboratory device, answering the experimental question: is the 
system in state a ? Postulate 3 asserts, that it is possible to identify the pure 
state by means of  one elementary measurement. 

Let us observe that the number p(a, fl)= f l ( c a r ( a ) ) , a , / ? ~ ,  has the 
meaning of the transition probability from pure state a to pure state ft. 
This number is well defined owing to Postulate 3. By Postulate 3 one can 
also define the transition probability between atoms as equal to the transi- 
tion probability between corresponding pure states. 

It is easy to see that: 

(i) 0 ~< p(a, fl) ~ 1 for all e, f l e  ~ ,  
(ii) p(a, a) = 1 for all a E N, 

(iii) p(a, fl) = 0 ~  car(a) _1_ car (fl) for all a, fl E N, 

with the orthogonality relation a _1_ b defined as a ~< b'. 
However, the assumed postulates do not imply the property of  symmetry 

for transition probability. We assume: 

Postulate 4. p(~, fi) = p(fl, c~) for every pair a, fl ~ ~ .  
This natural property makes possible the elimination of the main 

hypothesis of  Varadarajan's theorem concerning the modularity of the 
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lattice under any finite element of £~o. Nevertheless, we shall make use of 
the second assumption of Varadarajan: 

Postulate 5. I f  b ~ o,e (the least and the greatest elements of £~' re- 
spectively) and a ~ d ,  then there exists atoms a~, a2 such that al ~< b', 
az <~ b and a ~< a~ v az. 

This assumption is related to the quantum-mechanical 'projection 
postulate'. 

The tast axiom is of rather a formal nature: 

Postulate 6. ~ is irreducible. 
If  Postulate 6 does not hold, i.e. if there are super-selection rules imposed 

on the system, then any irreducible 'sector' of  the whole logic may be 
taken as 5¢. Thus the last postulate is not restrictive. 

For  a further discussion of  Postulates 1 to 4, the reader is referred to the 
paper of  Bugajska & Bugajski (1973). 

3. Theorems 

The present section is devoted to the proof  that the mentioned hypothesis 
of Varadarajan's theorem is a consequence of our Postulates 1 to 6. The 
proof  is based on a series of  lemmas. 

Logic ~ ,  by Postulate I, is atomic, hence set ao~= {b ~ 5¢Ib ~< ao}, ao ~ ~ ,  
contains at least one atom. We denote the set ao ~ N d of  all atoms contained 
in ao by d(ao).  One can find in d(ao)  subsets of pairwise orthogonal atoms. 
Amongst these subsets there exists a maximal one, by Zorn's lemma. 

Definition 1. An orthobasis of  ao is a maximal subset of  pairwise ortho- 
gonal atoms contained in ao. 

Obviously, if {ai, i ~ J}, J - - some indexing set, is an orthobasis of ao, 
then ao = V ai (by Postulate 1). 

Lemma 1. I f  the countable orthobasis {a,,n ~ N} of  ao exists, then any 
other orthobasis of ao is countable. 

Proof. Let {b~, i ~ J} be an orthobasis of ao. One can prove, that if a is 
an atom, then p(a,b~)v~O only for some countable set of indices 
J(a) = {il, i2 . . . .  } c J. Thus set J(al) U J(a2) U J(a3) O . . .  is countable. 
I f  i~J l (J (aOUJ(a2)  U. . . )  then b~_[_a, for all n o N .  Thus 
bi _L al v az v ... = ao and J = J(al) U J(a2) U .... 

Lemma 2. If  the orthobasis {al,a2 . . . .  ak} of ao, composed of k elements, 
exists, then any other orthobasis of ao is composed of  k elements. 

Proof We adopt the proof  of  the analogous statement given by Mielnik 
(1968). Let {b,,,n ~ N} be an orthobasis of ao. If  a is an atom of ao, then 
~,~N p(a,b,) = 1. Thus ~=~ ~,~N p(a,,,b,) = k and byint erchanging the 
order of summation we obtain ~,~n 1 = k. 
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Lemma 2 enables us to introduce the notion of dimension of an element 
o f ~ :  

Definition 2. I f  a possesses a finite orthobasis, composed of  k elements, 
then a will be called a finite element of ~ and the number k the dimension 
of  a, k = dim (a) in symbols. 

We shall prove such defined dim(a) to be the dimension function, i.e. to 
have the properties: 

(i) dim (o) = 0, dim (a) I> 0, 
(ii) a ~< b and a # b ~ dim (a) < dim (b), 

(iii) dim (a v b) + dim (a A b) = dim (a) + dim (b), 

for every finite a, b ~ La. 
The first property is obvious, as well as the second (by Postulate 1). 

Before deriving property (iii), we shall prove 

L e m m a  3. I f  b is a finite element of  La, and a is an atom, a ~ d(b) ,  then 
dim(b v a) = dim(b) + 1. 

Proof. It follows from Postulate 5, that there are atoms as, a2 such that 
al <~ b ', a2 < b, a <<. al v a2. Hence b v a <<. b v al v a2 = b v a~. On the 
other hand, there exists by Postulate 1, an atom b~ such that b~ A_ b and 
b v b~ ~< b v a. Consequently, b v b~ ~< b v a ~< b v a~. Thus, by Postulate 1 
and Lemma 2, b v b l = b v a s .  This proves that b v a = b v a ~  and 
dim (b v a) = dim (b) + 1. 

The two following corollaries are implied by the above lemma: 

Corollary I. I f  as a2 . . . .  ak are atoms, and ao = as v az v ... v ak then ao 
is finite and dim (ao) ~< k. 

Corollary 2. I f  a,b-finite dements of  La, then a v b is finite and 
dim (a v b) + dim (a A b) ~< dim (a) + dim (b). 

Now we are able to prove property (iii) of the function dim(a): 

L e m m a  4. I f  a,b-finite elements of  &¢, then dim(a v b ) +  dim(a A b) 
= dim (a) + dim(b). 

Proof. Let us denote a v b by ao and dim (ao) by k. I f  c ~< ao, then we 
define relative orthocomplement c o of c: c ° = c ' A  ao. Obviously, 
dim(c °) = k - d i m ( c ) .  It  is easy to see that (cl v c2) ° =  c1°^ c2 ° and 
(cl A c2) ° = cl ° v c2 ° for any cx, c2 < ao. Corollary 2 states that 

dim (a ° v b °) + dim (a ° A b °) < dim (a °) + dim (b°). 
Hence 

k - dim (a A b) + k - dim (a v b) ~< k - dim (a) + k - dim (b) 
and 

dim (a v b) + dim (a A b) i> dim (a) + dim (b). 

Thus dim(b) is a dimension function on the lattice a ~ for any finite 
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element a of ~¢. It is proved (Varadarajan, 1968, p. 22) that if a dimension 
function is defined on some lattice, then the lattice in question is modular. 
Consequently, the following theorem holds: 

Theorem 1. Let .~a and 5" satisfy Postulates 1 to 5. Then a ~ is a modular 
lattice for every finite a ~ ~a. 

However, Varadarajan's hypothesis states that a a is a geometry of finite 
rank, provided a is finite. Hence we must prove that if a is finite then a ~ is 
irreducible, i.e. that the logic L a is completely irreducible (in terms of  
Gudder, 1970). 

We shall prove the equivalence of  the complete irreducibility and 
irreducibility of  ~ .  The proof  is based on the following 1emma: 

Lemma 5. I f  al, a2, b are three distinct atoms and d ( a l  v a2) = {as,a2}, 
then 

d ( a i  v a~ v b) = {a~} U d (a 2  v b) 
o r  

d ( a s  v a2 v b) = {a2} U d ( a s  v b) 

Proof. I f  d(a~ v a2) = {a~,a2}, then as _L a2. Element a i v  a2 v b of  
is three-dimensional, hence there exists atom e such that c 2_ al,a2 and 
al v a2 v b=a~ v a2 v e. Let e~ e ~¢¢(as v a2 v c) and c~ 4a~,a2,c, then 

dim ((el v e) ^ (ai v a2)) = dim (el v e) + dim (al v a2) 
- dim ((el v e) v (a~ v a2)) = 1 

Hence (el v e) ^ (al v a2) = al or a2 and cl e ~ ' (a l  v e) or e ~¢(a2 v e). 
Thus ~¢(al v a 2 V e) = ~ ( a l  v e) U ~¢(a2 v e). 

Let cl e ~¢(ai v c), c2 e d (a2  v e) and ci, c2 # ai, a2, c. Then 

d i m ( ( c i v c 2 ) ^ ( a i v a 2 ) ) = l  and c i = a i  or c2=a2,  

contrary to our assumption. Consequently: 

d ( a i  v az v c) = {ai) U d ( a z  v e) or = {a2) U d ( a i  v c). 

It  is implied that b e ~ ( a l  v c) or e d ( a 2  v e) and d ( a l  v a2 v b) = 
(a3  o d(a2  v b) or = {a2} 0 d(a~ v b). 

An obvious consequence of the lemma is 

Corollary 3. I f  al, a2, b are distinct atoms, and d ( a i  v a2)= {ai,a2} 
then: 

O) b A_ al or b A_ a2 or b _k as, a2, 
(ii) d ( b  v as) -- {b, al} or d ( b  v a2) -- {b, a2}. 

Lemma 5 enables us to prove 

Theorem 2. Let ~ and 5" satisfy Postulates 1 to 5. Then ~ is irreducible 
i f f .~  is completely irreducible. 



98 K. BUGAJSKA 

Proof. The first assertion of the theorem: £P is completely irreducible 
£e is irreducible, is obvious. Let us prove the second one, assuming oLa 

not to be completely irreducible, i.e. assuming that there exists a finite 
element a of ~¢, such that the modular lattice a a is reducible. That  causes 
the existence of  two atoms al, a2 such that sO(a1 v a2) = {al,a2}. Let 
d l =  d\~C(a~), a '2 = d\~C(a~). Set d f  contains a, and all atoms non- 
compatible with a~ (i = I, 2). I f c  ~ d2 ,  then d ( c  v a 0  = {c, al} and c _/_ aa, 
by Corollary 3. Similarly, if c ~ al l ,  then d ( c  v a2) = {c, a2} and c _1. a2. 
Applying Lemma 4 to c~ ~ da ,  cz ~ d 2  and al we obtain c~ _1_ c2, i.e. 
~ i  2. ~¢z. In an analogous manner one can prove that if d E ~¢3 = 
~¢\(~¢1 U ~¢2), then d J_ el and d .L c2 for any cl e ~¢t and c2 ~ s¢2. Thus 
the set of  atoms a¢ is divided into three disjoint and mutually orthogonal 

subsets:~C~,~/2, sC3. Thee lemen t sa~=  V b, a2=  V b, a 3 =  V b 
b~z~' 1 bE~2 b~3 

are compatible with all elements of £,¢. Consequently, La is reducible. This 
proves the desired result: ~ is irreducible =~ ~ is completely irreducible. 

The above series of  lemmas and theorems may be summarised as 

Theorem 3. If  5¢ and 6 ° satisfy Postulates 1 to 6, then a ~ is a geometry 
of finite rank for every finite a e ~ .  

4. Conclusions 

The result of the previous section enables one to give a more plausible 
hypotheses than the original ones for Varadarajan's representation theorem. 
Thus Varadarajan's (1968, p. 179) theorem takes the form: 

Theorem 4. Let £,¢ and 6O satisfy Postulates 1 to 6 of  Section 2 and let 
there exist at least one a ~ £a such that dim(a) >/4. Then there exists a 
division ring D, an involutive anti-automorphism 0 of D, a vector space 
V over D, and a definite symmetric 0-bilinear form ( . ,  • ) on V x V such 
that (V, ( .  , • )) is Hilbertian and ~ is isomorphic to the logic of all ( .  , • )- 
closed linear manifolds of  V. 

The assumed postulates seem to be satisfactory (with the possible excep- 
tion of Postulate 5) from the phenomenologieal point of view. It is very 
probable that every quantum system with symmetric transition probability 
may be described in terms of some Hilbertian vector space. Thus the 
symmetry of transition probability appears to be a criterion for the existence 
of  the 'vector space representation' of  quantum logic. 
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